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Coordinate systems for spacecraft
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Some recommendations on choosing of a 

coordinate system:

• Earth-centered inertial for orbit problems

• Spacecraft-centered local horizontal for 

the Earth remote sensing missions 

• Spacecraft-centered inertial for remote 

sensing missions of any other objects



Geocentric coordinate system
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Axis directions:

the X axis is directed to the point of the

vernal equinox;

the Z axis is directed along the direction

of the angular velocity vector of the

Earth's rotation (to the north);

the Y axis completes the axis system to

the right-handed coordinate system.



What forces act on the a spacecraft in flight
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 𝐹𝑠 − gravity of the Sun

 𝐹𝑎 − aerodynamic drag

 𝐹𝑀 − gravity of the Moon

 𝐹𝑔 − gravity of the Earth

 𝐹𝑠𝑝 − light pressure of the Sun



Forces and accelerations that act on the spacecraft in flight
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𝑓- perturbing acceleration

𝑔0 -acceleration of central gravity field 
(zero spherical harmonics)

𝑟э -Earth's radius

1- 𝑔

2- perturbation for aerodynamic drag

3- the second harmonic of the 
gravitational field of the Earth

4- fourth harmonic of the 
gravitational field of the Earth

5- force of gravity of the Moon

6- force of gravity of the Sun

7-force of light pressure of the Sun

𝑟-radius vector of a spacecraft
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LEO is an orbit around Earth with 
an altitude between 160 kilometers 
and 2000 kilometers

GEO
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The Earth's gravitational field

Newton's law of universal gravitation

𝐹1=𝐹2 =G
𝑚1𝑚2

𝑟2

1. The equation for the magnitude of 
the force caused by gravity

 𝐹= –
𝜇𝑚

𝑟2
 𝑟𝑜= –

𝜇𝑚

𝑟3
 𝑟

µ=GM – gravitational parameter

 𝑟𝑜 =
 𝑟

𝑟
– unit vector

r – distance between the 
center of mass of the Earth 
and the center of mass of the spacecraft
 𝑟 – radius-vector of the spacecraft
m – mass of a spacecraft

2.Combining Newton's second law with 
universal gravitation law, we obtain an equation 
for the acceleration vector of a satellite:

 𝐹 =m  𝑎 = –
𝜇𝑚

𝑟3
 𝑟

  𝑟+
µ

𝑟3
 𝑟 = 0 (1)

Motion equation in 
inertial coordinate system
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The Earth's gravitational field

 𝑋 = 𝑉𝑋 ,

 𝑌 = 𝑉𝑌 ,

 𝑍 = 𝑉𝑍 ,

 𝑉𝑋 = −
𝜇

𝑟3
𝑋

 𝑉𝑌 = −
𝜇

𝑟3
𝑌

 𝑉𝑍 = −
𝜇

𝑟3
𝑍

  𝑟+
µ

𝑟3
 𝑟 = 0

Motion equation in 
inertial coordinate system

µ = 398602 km3/s2

Assumptions:
1) Central gravity field

2) No other forces
3) Mass of a Satellite << Mass of the Earth



Kepler's laws  №1 of spacecraft motion

Motion of a spacecraft in the central gravitational field is made

along a conical section. One of the focuses is located in the

attracting center (the Earth), and the main focal axis coincides

with the direction of the Laplace vector.

𝑟 =
𝑝

1 + 𝑒𝑐𝑜𝑠(ν)
(5)

e=0 – orbit is a circle

0<e<1 – orbit is a ellipse

e=1 – orbit is a parabola

e>1 – orbit is a hyperbola

There is the following classification of orbits 

depending on the magnitude eccentricity:

Equation of the orbit in the polar coordinate system
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Elliptical orbit of a spacecraft

Elliptic orbits are the most common in nature

The equation of the elliptical orbit is

𝑥2

𝑎2
+
𝑦2

𝑏2
= 1

a)

𝑟 =
𝑝

1 + 𝑒 cos ν
0<e<1

𝑟𝜋 =
𝑝

1 + 𝑒
, 𝑟𝛼 =

𝑝

1 − 𝑒
,

If e,p are given then

𝑎 =
𝑟𝛼 + 𝑟𝜋

2
=

𝑝

1 − 𝑒2
,

𝑐 =
𝑟𝛼 − 𝑟𝜋

2
= 𝑎𝑒,

𝑏 = 𝑎2 − 𝑐2 = 𝑎 1 − 𝑒2 =
𝑝

1 − 𝑒2
,

𝑒 =
𝑐

𝑎
.
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Elliptical orbit of a spacecraft

b) If 𝑟𝜋, 𝑟𝛼 are given then

𝑟𝜋 = 𝑅 + 𝐻𝜋, 𝑟𝛼 = 𝑅 + 𝐻𝛼 ,

𝑝 = 𝑟𝜋 1 + 𝑒 = 𝑟𝛼 1 − 𝑒 ,

𝑏 = 2𝑟𝛼𝑟𝜋

𝑝 =
2𝑟𝛼𝑟𝜋
𝑟𝛼 + 𝑟𝜋

𝑒 =
𝑟𝛼 −𝑟𝜋
𝑟𝛼 + 𝑟𝜋

𝑉𝑒𝑙 =
𝜇

𝑟
2 −

𝑟

𝑎
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Kepler’s equation

The time of motion along an elliptical 

orbit describes the Kepler’s equation

𝑡 − τ =
𝑎3/2

µ
𝐸 − esin𝐸

τ - time of passage of pericenter

E - eccentric anomaly

Period of revolution for elliptical orbit

𝑇 =
2π𝑎3/2

µ

Kepler's laws  №3 of planetary motion

𝑇1
2

𝑇2
2 =

𝑎1
3

𝑎2
3

To predict the motion, the Kepler’s equation is

represented in the form of the transcendental

equation:

𝐸 − e sin 𝐸 = 𝑀

𝑀 =
𝜇

𝑎3
𝑡 − 𝜏



Integrals of the motion equation
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Kepler's laws  №2 of spacecraft motion

A line segment joining a spacecraft and the

Earth sweeps out equal areas during equal

intervals of time

The same (blue) area is swept out in a fixed time period. The green arrow is velocity. The purple

arrow directed to the Earth is the acceleration. The other two purple arrows are components of

acceleration. They are parallel and perpendicular to the velocity.

 𝑟 × 𝑉 = C



Velocity

Velocity in circular orbit 𝑉1 =
𝜇

𝑟

The Escape velocity 𝑉е =
2𝜇

𝑟
= 2𝑉1 – is the minimum speed needed for a free, 

non-propelled object to escape from the gravitational influence of a massive body

1st, km/s 2nd, km/s

Earth 7,91 11,2

Moon 1,68 2,38

Mars 3,55 5
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Elements of the orbit in space

The main two elements that define the shape and size of the 
ellipse:
Eccentricity (e)—shape of the ellipse, describing how much it is 
elongated compared to a circle (not marked in diagram).
Semimajor axis (a) —the sum of the periapsis and apoapsis 
distances divided by two.

Two elements define the orientation of the orbital plane in 
which the ellipse is embedded:
Inclination (i)—vertical tilt of the ellipse with respect to the 
reference plane, measured at the ascending node (where the 
orbit passes upward through the reference plane, the green 
angle i in the diagram). 
Longitude of the ascending node (☊ or Ω)—horizontally 
orients the ascending node of the ellipse (where the orbit 
passes upward through the reference plane) with respect to 
the reference frame's vernal point (the green angle Ω in the 
diagram).

Argument of periapsis (ω) defines the orientation of the ellipse in the orbital plane, as an angle measured from the ascending 
node to the periapsis (the closest point the satellite object comes to the primary object around which it orbits, the blue angle
ω in the diagram).
True anomaly (ν, θ, or f) at epoch (M0) defines the position of the orbiting body along the ellipse at a specific time (the 
"epoch").
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Classification of orbits of spacecraft by inclination of the orbit

Inclination  belongs to the range 0° < 𝑖 < 90 °

1. Equatorial orbit 𝑖 = 0 °

2. Polar orbit 𝑖 = 90 °
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Classification of orbits of spacecraft by inclination of the orbit
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 𝑋 = 𝑉𝑋 ,  𝑌 = 𝑉𝑌 ,  𝑍 = 𝑉𝑍 ,

 𝑉𝑋 = −
𝜇

𝑟3
𝑋

 𝑉𝑌 = −
𝜇

𝑟3
𝑌

 𝑉𝑍 = −
𝜇

𝑟3
𝑍

µ = 398602 km3/s2

𝑋 = 𝑟 cos 𝑢 cosΩ − sin 𝑢 cos 𝑖 sin Ω ,

𝑌 = 𝑟 cos 𝑢 sinΩ + sin 𝑢 cos 𝑖 cosΩ ,

𝑍 = 𝑟 sin 𝑢 sin 𝑖 .

𝑉𝑥 = 𝑉𝑟 cos 𝑢 cosΩ − sin 𝑢 cos 𝑖 sin Ω − 𝑉𝑛 cosΩ sin 𝑢 + sinΩ cos 𝑢 cos 𝑖 ,

𝑉𝑦 = 𝑉𝑟 cos 𝑢 sinΩ + sin 𝑢 cos 𝑖 cosΩ − 𝑉𝑛 sin Ω sin 𝑢 − cosΩ cos 𝑢 cos 𝑖 ,

𝑉𝑧 = 𝑉𝑟 sin 𝑢 sin 𝑖 + 𝑉𝑛 cos 𝑢 sin 𝑖 ,



Orbital maneuvering

Coplanar maneuvers

• Transition from a circular orbit to an elliptical orbit. 
• Transition from a circular orbit to a hyperbolic orbit.
• Two-burn transition between circular orbits.

Noncoplanar maneuvers

• Transition between noncoplanar circular orbits of equal radius.
• Transition between noncoplanar circular orbits of different radii.
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1
8

The transfer from a circular orbit to an elliptical or from an 

elliptical orbit to a circular orbit if they have common point

𝑉𝑎 =
2𝜇𝑟p

 𝑟𝑎(𝑟𝑎 + 𝑟p
.𝑉𝑝 =

2𝜇𝑟𝑎

 𝑟p(𝑟𝑎 + 𝑟p
,

Δ𝑉1 = 𝑉p − 𝑉cir =
𝜇

𝑟p

2𝑟а
𝑟а +𝑟𝑝

− 1 .

Δ𝑉1 = 𝑉cir − 𝑉𝑎 =
𝜇

𝑟а
1 −

2𝑟p

𝑟а +𝑟p
.

If two orbits are in the same plane, they are coplanar.

Orbital maneuvering



Orbital maneuvering

• Two-burn transition between circular orbits.

Δ𝑉1 =
𝜇

𝑟 0

2𝑟 𝑓

𝑟 0 + 𝑟 𝑓
− 1

Δ𝑉2 =
𝜇

𝑟 𝑓
1 −

2𝑟 0

𝑟 0 + 𝑟 𝑓
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Orbital maneuvering

• Transition between noncoplanar circular orbits of equal radius.

Δ𝑉 = 2𝑉кр sin
∆𝑖

2
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Orbital maneuvering

• Transition between noncoplanar circular orbits of different radius.

Δ𝑉1 =
𝜇

𝑟 0

𝑟 0 + 3𝑟 𝑘

𝑟 0 + 𝑟 𝑘
− 2

2𝑟 𝑘

𝑟 0 + 𝑟 𝑘
cos ∆𝑖

Δ𝑉2 =
𝜇

𝑟 𝑘

3𝑟 0 + 𝑟 𝑘

𝑟 0 + 𝑟 𝑘
− 2

2𝑟 0

𝑟 0 + 𝑟 𝑘
cos ∆𝑖 − ∆𝑖1
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По желанию – личные контактные
данные автора,

телефон,
e-mail

По желанию – личные контактные
данные автора,

телефон,
e-mail


